UNIVERSITY OF BERGEN

Institute of Physics and Technology

Hydrate Formation and Gas Production from Hydrates by CO₂ Injection

By Lars Petter Øren Hauge

Natural gas hydrate

- Crystalized structure consisting of water and a guest molecule (e.g. methane) – resembles ice
- High pressure (>30 bar) and low temperature (<10 °C)
- Permafrost regions and off-shore

Estimates of Total Gas Hydrate Amount

uib.no

Hydrate Reservoir strategies

- Production scenarios
 - Pressure reduction
 - Temperature increase
 - Chemical additive
 - Exchange with CO₂

Hydrate Injection of CO₂ to produce methane

Pros

- Integrity of hydrate structure remains intact
- Sequestration of CO₂
- No temperature increase
- Increased stability

Cons

- Requires permeability
- Risk of hydrate formation
 from free water
- Relatively slow rate of exchange
- Investment cost

Experimental set up

Experimental conditions

- Porous media
 - Bentheim sandstone
 - High permeable (1.1 D)
 - 20-25% porosity
 - Homogeneous (99% quartz)
- Brine saturation 0.4 0.7
- Brine salinity 0.1 3.5 wt% NaCl
- Pressurized with CH₄ to 83 barg/1200 psi
- Temperature reduced from ~23 °C to 4 °C

Methane Hydrate formation

EXPERIMENTAL RESULTS

Same initial conditions (system not dissasembled, only reformed)

uib.no

Hydrate formation

uib.no

Water saturation based on mass balance and resistivity

Post Hydrate formation

Post Hydrate formation

uib.no

CO₂ induced methane production

EXPERIMENTAL RESULTS

Experimental procedure

- A back pressure valve maintains constant production pressure of approximately 85 barg.
- CO_2 , or a CO_2/N_2 mix, is injected at a constant flow rate of 1.2 ml/h for all experiments.
- Injection pressure, production pressure, gas fraction and mass produced is monitored and later used to calculate differential pressure and fluids produced.

Fraction of Methane during Production Measured by GC

Production during CO₂ injection Resistivity, gas produced and differential pressure

Remediation of plugged core by use of N₂

CO-injection of CO_2 and N_2 (25/75 mol% resp.)

CO-injection of CO_2 and N_2 (25/75 mol% resp.)

Methane recovery Free gas in porous media included

UNIVERSITY OF BERGEN

Institute of Physics and Technology