Water Conformance and Mobility Control by CO2 Exsolution

Lin Zuo, Sally Benson
Nov 20, 2013

Collaborative Symposium on CO2 EOR between Universities in Texas and Norway, oil industry in Texas and Norway and other CO2 EOR stake holders
Nov. 19 – Nov. 21, 2013
INTRODUCTION

• What is CO$_2$ exsolution?
INTRODUCTION

• What is the difference between injected CO$_2$ and exsolved CO$_2$?
INTRODUCTION

• What is the difference between injected CO$_2$ and exsolved CO$_2$?

10% gas saturation
INTRODUCTION

- What are scientific implications?
 - Immobile gas
 - Disproportional water mobility reduction

Bubble Movements

![Bubble Movement Diagram](image)

Relative Permeability

- $k_{w,\text{drainage}}$
- $k_{\text{CO}_2,\text{drainage}}$
- $k_{w,\text{exsolution}}$
- $k_{\text{CO}_2,\text{exsolution}}$

![Relative Permeability Graph](image)

- Water
- Gas

Relative permeability vs. Water saturation
EXSOLUTION EOR

- Problems after waterflooding
 - Inefficient spatial displacement
 - Poor pore-scale displacement
- Concept
 - Deliver \(\text{CO}_2 \) to flooded zones by carbonated water injection
 - Drop pressure -> \(\text{CO}_2 \) exsolves and plugs established flow paths
 - Establish new flow paths
EXSOLUTION EOR

- Micromodel Experiment of Water Conformance
 - Constant injection rate, 1m/day (CA~10^{-7})
 - Constant producer pressure (650psi), 150psi below saturated pressure
 - Viscosity of mineral oil ~ 100 X viscosity of water @ 45C

grains & CO₂ bubbles: black; oil: gray; water: green

100μm
EXSOLUTION EOR

- Oil/water/CO₂ interaction in Exsolution EOR

- CO₂ displaces water as exsolution occurs
- No additional oil recovered (by the water) until a certain CO₂ saturation is reached
- Alternating CO₂-water and water-oil displacement
EXSOLUTION EOR

Aluminium Core Holder

Experimental Apparatus

System Schematic

- CP
- WT
- WT
- BP
- CO₂
CORE FLOODING EXPERIMENTS

- Berea sandstone
- Constant injection rate, 1m/day (CA~10^{-7})
- Viscosity of mineral oil ~ 100 X viscosity of water

- Carbonated water injection at 1500psi
- Pressure transition from 1500psi to 600psi
- Carbonated water injection at 600psi
CONCLUSIONS

- Effective local mobility control by CO$_2$ exsolution;
- Production increase with significant less CO$_2$ use;
- Development potential for water flooded reservoirs (confined, <1500m depth, not for heavy oil).

ACKNOWLEDGEMENT

This work is funded by the Global Climate and Energy Project (GCEP) at Stanford University.
The micromodel experiments were conducted in the Environmental Molecular Sciences Laboratory (EMSL), a user facility located at Pacific Northwest National Laboratory (PNNL).
Water Conformance and Mobility Control by CO2 Exsolution

Lin Zuo, Sally Benson
Nov 20, 2013

Collaborative Symposium on CO2 EOR between Universities in Texas and Norway, oil industry in Texas and Norway and other CO2 EOR stake holders
Nov. 19 – Nov. 21, 2013