In-Situ CO2 Imaging in Laboratory EOR Research

Arne Graue

Dept. of Physics and Technology University of Bergen

CO₂ for EOR as CCUS, Rice U., Houston, TX, USA Nov. 19th-21st, 2013

The University of Bergen

Way Forward

Core analysis:

- Micromodels
- Core plugs
- Blocks
- Numerical simulations

Upscaling:

- Numerical modelling on pore scale
- Numerical modelling on field scale

Pilot field tests:

- Texas (Operator: Tabula Rasa)
- Ekofisk (between close horizontal wells)

Experimental setup micro model experiments

In-Situ Fluid Saturations by Magnetic Resonance Imaging (MRI)

Tertiary CO₂ Injection of Neutral-Wet Chalk

Temp.: 20^oC

Amott Index 0.15

Time: 3.74 PV

.

SCA2008-41

1

Tertiary CO₂ Injection of Less Water-Wet Chalk

Temp.: 40°C

Amott Index 0.25

Time: 3.93 PV

Time: 4.10 PV

Time: 4.18 PV

Industrial CT

- Consists of a sample rotator, an x-ray source and a detector
- The detector measures the absorption of x-rays when they pass through the sample
- The sample rotates, creating a 2D image of each layer, and by moving either the sample or the detector system vertically, a 3D image is made

From www.deetee.com

- Can be moved closer to the source then a medical CT, and thus has larger resolution
- Much higher resolution then other imaging techniques
 - MRI \approx 1000 microns
 - Medical CT \approx 250 microns
 - Industrial CT \approx 5 microns
- Runs at high voltage, meaning more energetic and penetrating x-rays, which again leads to higher resolution, but also lower contrast images
- Runs at low power
- Following images taken at 160 keV, with a resolution of 40 microns per voxel, with 1024*1024*1400 voxels

Results: Rock characterization using CT

- 40 x 40 x 42 microns resolution
- 1.5" Portland chalk

Results: Rock characterization using CT

- 40 x 40 x 42 microns resolution
- 1.5" Portland chalk

Results: Rock characterization using CT

- 40 x 40 x 42 microns resolution
- 1.5" Portland chalk

0.9 00 0.8

Large Volume Blocks

Block Preparation

High Pressure, Large Volume

Nuclear Tracer Imaging

EXPERIMENTAL PROCEDURES

- 1. Waterflood whole block
- 2. Oilflood to S_{wi}, fracture and reassemble block
- **3. Waterflood <u>fractured</u> block**

A) Strongly-water-wet
B) Moderately-water-wet
C) Nearly-neutral-wet

BLOCK SCALE Strongly water-wet

0.15PV ingle low Longth (cm)

0.26PV

0.17 PV

0.44 PV

BLOCK SCALE Moderately water-wet

Length [cm]

Length [cm]

Length [cm]

BLOCK SCALE Moderately oil-wet

Wettability effects in fractured blocks

What happens inside the fractures during fluid flow?

MRI (Magnetic Resonance Imaging)

The high spatial resolution allow visualization of fluid flow patterns inside a 1mm fractures between stacked core plugs. The high resolution reveal wetting phase bridging phenomena inside the fracture.

Recap: WF in water-wet fractured chalk

Wettability: I_w =1.0

Wettability: $I_w = 0.7$

Water Bridges with Escape Fracture

Constant differential pressure

Constant flow rate

Experimental setup

Whole view

Cut in two

Fracture flow in oil-wet limestone

Waterflooding

Fracture filling at <u>strongly water-wet</u> conditions

Fracture filling at <u>moderately oil-wet</u> conditions

Start

TIME

WF oil-wet conditions

IEOR: Water + (Surf) + CO2 Foam

Pretreatment of fracture surfaces

IEOR: Water + (Surf) + CO2 Foam

Injection of mobility control agent

IEOR: Water + (Surf) + CO2 Foam Chase fluid injection

Large Scale Collaboration Emphasizing Mobility Control and CO2 EOR in Field Pilots in Texas

Collaboration: 11 universities

- Rice University
- University of Texas at Austin
- Texas A&M U.
- Stanford U.
- Imperial College, London
- TREFLE, Bordeaux, France
- U. of Kansas
- New Mexico Tech
- TU Delft, The Netherlands
- NTNU, Trondheim, Norway
- University of Bergen, Norway

CO₂ as CCUS for Integrated EOR

Arne Graue, Dept. of Physics, University of Bergen, NORWAY

Collaboration: 11 Universities in France, UK, Netherland, USA and Norway Funding: The Research Council of Norway and 3-5 oil companies

<u>Objective:</u> Experimentally determine optimum conditions for CO₂ as CCUS for Integrated EOR, low S_{or} & prod. of ROZ

Integration of Geology, Mathematical Modeling and Laboratory Experiments

Lab to pilot field test

MRI of CO2 injection

Complementary NTI & MRI facilities

