CO₂ Capture and EOR: Can Both Be Profitable Together

Chuck Fox

Windy Cove Energy, LLC

Agenda

- Present Situation
- Carbon Capture Utilization and Storage Challenge
- Where the Economics Don't Work
- Where the Economics Do Work
- Conclusions

CCUS is Happening Now

 CO₂ flooding began with anthropogenic sources

Val Verde Basin,
 Enid Fertilizer Plant,
 La Barge, Dakota
 Gasification Plant

No power plants

U.S. Pipeline SystemsSource: Kinder Morgan

50 Million TPY (1% US Emission)
Mostly Non-Anthropogenic

CCUS

To capture CO₂, transport it to an oil field, use it for EOR, securely store it

The CCUS Challenge

To capture CO₂, transport it to an oil field, use it for EOR, securely store it and do so at a profit.

Kemper Project

- "one of the most-expensive"
- "\$4.7 billion and rising"
- "scaring people away"
- "calamity"

Source: WSJ, Oct 13, 2013

CCUS Often Has Unfavorable Economics

2007 CO₂ Mitigation Costs (\$/tonne)

Sources: NETL, IPCC, Personal Knowledge

When Do the Economics Work?

Example Project

- 50 MMCFD
- 90 miles
- Vented Pure CO₂ (wet)
- Oil field needs CO₂ for 10 years (182.5 BCF)
- Oil field needs CO₂ at a price <= 2% of oil price

1 tonne CO₂ ~ 19.3 MCF CO₂ 50 MMCFD ~ 946,000 TPY

Dehydration and Compression Cost Equations

- Plant capital = \$3,000 (HP)
- Plant operating costs (excl. power) = \$0.08/MCF
- Plant Power Cost/Day =
 0.75 (HP/1000) (24) (\$/MW-hr)

CO₂ Dehydration Equipment Colorado, U.S.A.

Source: Kinder Morgan

Power Price Equation

Power Price = Wires + (Heat Rate) (Gas Price) + Adder
 \$/MW-hr = \$10 + 8 (\$/MMBTU gas price) + \$10

Assume natural gas price = \$4/MMBTU

Power Price = 10 + (8) (4) + 10 = \$52/MW-hr

Currant Creek Power Plant Source: Wikipedia

Horsepower Calculation

```
• HP = 22 (Rs)(s)(Q)(F)
  Assume: Ps = 0 PSIG (15 PSIA)
          Pd = 2200 PSIG (2215 PSIA)
            s = no. stages = 5 (5 Stage unit)
           Rs = comp ratio/stage < 3.0 to 4.0
           Rs = (2215/15) \wedge (1/5) = 2.7
           Q = 50 MMCFD
            F = 1 for s = 1; 1.07 for s = 2; 1.1 for s > 2
• HP = 22(2.7)(5)(50)(1.1) = 16,300 HP
```

Dehydration and Compression Cost Calculation

- Plant Cost = \$48.9 million
- Equivalent Uniform Annual Cost (15%) = \$9.7 Million
- Unit Capital Cost = \$0.53/MCF
- Plant Operating Cost = \$0.08/MCF
- Plant Power Cost/Day = \$15,300
- Plant Power Cost /MCF = \$0.31/MCF
- Total Cost = 0.53 + 0.08 + 0.31 = \$0.92/MCF

Transportation Costs

- Pipeline Cost = \$50,000 / in-mile
- 10 inch pipe needed for the 90 mile pipeline
- Cost = (90) (10) (\$50,000) = \$45 million
- Equivalent Uniform Annual Cost (15%) = \$8.9 million
- Pipeline Tariff = \$0.49/MCF

Katz CO₂ Pipeline Source: Kinder Morgan

Delivered Price vs. Maximum Price

- Dehydration and Compression Cost = \$0.92/MCF
- Pipeline Tariff = \$0.49/MCF
- Delivered Price (at 15%) = \$1.41/MCF(at 20%) = \$1.62/MCF
- Maximum CO₂ price is about 2% of oil price

1.35/0.02 = \$71 per barrel

1.55/0.02 = \$81 per barrel

Therefore CCUS is economically feasible

Sources of Pure CO₂

- Fertilizer Plants
- Natural Gas/CO₂
 Separation Plants
- Coal Gasification Plants (not economic to build)
- IGCC Plants
 (not economic to build)
- Underground CO₂
 Source Fields

CO₂ Compressor Source: Kinder Morgan

Conclusions

- Capture at pulverized coal power plants is too expensive to combine with EOR
- Capture at coal gasification plants including IGCC plants is economically attractive if the plant is already built
- Capture of pure CO2 is economically attractive depending on the location

