UNIVERSITETET I BERGEN

Department of Physics and Technology

The Effect of Diffusion During CO₂ EOR in Fractured Reservoirs

CO₂ for EOR as CCUS November 21 2013 Øyvind Eide

Introduction

- Calculate diffusion coefficients
 - Simple system
 - Analytical solution
- Demonstrate diffusion on laboratory scale
- Molecular diffusion

- Saturation gradient dependent
- Blocking of phases
- Tortuosity
- Less important at large length scale highly dependent on fracture density

Experimental Setup

UID.no

Experimental Setup

- Outcrop rock samples (strongly water-wet)
- Rørdal Chalk
- Standard core size (1.5" x 8 cm)
- No water present
- Open fracture (1 mm aperture)
- 100 bars pressure (~1500 psi), 42 °C (107 °F)
- Core mounted horizontally

Fluids	Contents	Density [g/cm3]	Viscosity [Pa·s]
CO ₂	> 99.999 % CO ₂	0.63756	48.876
n-Decane	C ₁₀ H ₂₂	0.72228	760.92
1-lodooctane	C ₈ H ₁₇ I	1.33	N/A

Experimental Setup

- Spacer
 - Create high perm flow path
- Reference scanning
 - At pressure and temperature
 - Provides explicit saturations
 - No water present
- Digital cut-out

Porosity map

- Higher density areas
- Calcite filled burrows
- Symetrical around fracture

- Heterogeneities
- Gravity

- Heterogeneities
- Gravity

- Model reduced to a simpler system
 - Heterogeneous
 - Negligible gravity effects

- Production data from CT-images
- No differential pressure
 Diffusion dominant
- Model reduced to 1D
 - Center of model

$$\frac{\delta C_i}{\delta t} = D_i \frac{\delta^2 C_i}{\delta x^2} \qquad \qquad C_i = C_0 \left(1 - \operatorname{erf} \left(\frac{x}{2\sqrt{D_i t}} \right) \right)$$

 Assumes constant CO2concentration of 0.9 in the fracture

• 1E-9 m2/s

uib.no

Conclusions

- Effective diffusion coefficient similar to bulk diffusion coefficient when corrected for tortuosity
- Diffusion is a major driving force during CO₂ injection at core size resolution
- Less dominant at field scale
- Dependent on water saturation
 - Water shielding
 - Effective tortuosity changed
- Dependent on fracture spacing and connectivity
 - Gravity segregation more dominant in fractures
- Asphaltene deposition
- Computationally expensive in simulations

Thank you

UNIVERSITETET I BERGEN

Department of Physics and Technology

Conclusions

- Effective diffusion coefficient similar to bulk diffusion coefficient when corrected for tortuosity
- Diffusion is a major driving force during CO₂ injection at core size resolution
- Less dominant at field scale
- Dependent on water saturation
 - Water shielding
 - Effective tortuosity changed
- Dependent on fracture spacing and connectivity
 - Gravity segregation more dominant in fractures
- Asphaltene deposition
- Computationally expensive in simulations

